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Akaet-The stationary value problem of the local potential for heat conduction in a polygonal plate 
with temperature-dependent conductivity is transformed by a holomorphic function into an equivalent 
stationary value problem for another plate with a circular boundary. The equivalent problem is then 
solved by the Rayleigh-Ritz method since the coordinate functions in the circular region am readily 
available. This method offers a unified approach to the problem of the temperature distribution of one 
plate and of all others. The annlication of this method can be easily extended to other transoort ohenomena 

which are governed by the extremization of a functional. - 
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NOMENCLATURE 5, Ya rectangular coordinates ; 
~haracte~sti~ dimensions of a z, [, complex variables ; 
polygonal plate ; z =.#w, conformal mapping function ; 
derivative of any function f(c) 0, B*, dimensionless temperatures sub- 
with respect to the variable c; ject to and not subject to vari- 
function of the undetermined ations ; 
coefficients ai ; 5, 4 coordinates in a rectangular 
functional of the function 8; system in the c-plane ; 
Bessel function of order m ; P1 C", constant density and specific 
thermal conductivity and diffu- heat ; 
sivity ; #YL %x coordinate functions. 
reference values of k and K ; 
complex conjugate of any quan- 
tity Q; 
modulus of any quantity Q; 1. ~N~ODUC~ON 

symmetric part of any quantity THE LINEAR problem of heat conduction in a 

Q&i plate which has a boundary that coincides 
polar coordinates in the c-plane; with the coordinate curves has been studied 
time and dimensionless time ; extensively from both the engineering and the 
temperatures subject to and not mathematical viewpoints [l, 21. Analytic solu- 
subject to variations ; tions are not tenable for polygonal plates. 
specified initial temperature ; Laura and Faulstich [3] present solutions for 
dimensionless coordinates in a this important class of plates with constant 
rectangular system in the z- conductivity. These authors apply the Munakata 
plane ; approach [4] to transform the ~erenti~ 
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equation by a holomo~hic function, which 
maps the region of the definition of the original 
equation into a circular region; the solution of 
the transformed equation is then approximated 
by the Galerkin method. A fairly complete 
bibliography on the application of conformal 
mapping in this direction can be found in [5-71. 
This paper presents another aspect of the 
application of conformal mapping. In this new 
approach, a functional which is defined in an 
irregular plane region and requires a stationary 
value, is conformal~ mapped onto a circular 
region The functional which is now defined in a 
circular region, is extremized by the Rayleigh- 
Ritz method since the coordinate functions in a 
circular region can be easily chosen This method 
is successfully applied to the determination of 
the buckling loads of polygonal plates in [8]. 

Up until the local potential was introduced by 
Glansdorff et al. [9], application of the vari- 
ational method were largely restricted to the 
area of solid mechanics. Hays and Curd 
have applied this extended variational method 
to heat conduction in solids [IO], to diffusional 
problems [ 11, 121, and to hydrodynamics [ 131. 
Thus far, the extended variational method has 
been applied to problems with relatively simple 
geometric boundaries; that is, either square, 
circular or semi-infinite. It is the primary 
purpose of this paper to apply the conformal 
transformation to the local potential so that 
problems in a plane region with an irregular 
boundary can be investigated. As a specific 
illustration, the problem of unsteady heat 
conduction in polygonal plates with temperature- 
dependent conductivity is studied. Other trans- 
port problems can be formulated with a similar 
procedure. 

2. GENERAL FORMULATION 

Let an elastic plate in a temperature field 
occupy a region R with an irregular boundary C, 
as shown in Fig. la. It has been shown by Hays 
[14] that the macroscopic temperature distri- 
bution in R with the temperature of flux specified 
on C can be obtained by extremizing the follow- 

ing factional : 

+ pc,T; d.‘L”dydt (11 

subject to the initial condition and the subsidiary 
condition T* = T after the variation process. 

(b) 

FIG. 1. Conformal transformation of region R onto a unit 
circular region R, 

(a) Region of actual plate. 
(b) Region of transformed plate. 

The thermal ~ffusivi~ will be assumed to be a 
linear function of temperature which takes the 
form 

k 
KC--- 

PC, 
= K&l + oe1 

where CT is a free parameter characterizing the 
slope of the diffusivity-temperature curve. 
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It is expedient to introduce the following 
dimensionless variables : 

(34 

and 

e=;. (34 
9 

Substitution of equation (2) and (3) into equation 
(1) yields 

0 R 

a6* 
+ 8-- 

aT 
dudvdT. (4) 

The temperature T must be equal to T, in 
R f C at t = 0 and equal to zero on C for t > 0. 
Consequently, the dimensionless temperature 
must satisfy the initial and the boundary con- 
ditions as follows : 

e=p=:l inRat t=O PaI 
fj=fj*=0 on C for t > 0. (5b) 

If the coordinate functions which satisfy the 
completeness condition in R and the conditions 
in equation (5b) are chosen, then the functional 
in equation (4) can be extremized by the Rayleigh- 
Ritz method. The choice of the coordinate 
functions for a simple shape of R is demonstrated 
in [ 10, 131. The coordinate functions for a 
complicated shape can be formulated according 
to the guides proposed by Yoshiko and Kawai 
[ 151. However, the method in [ 151 is undesirable 
since the chosen functions must be formulated 
once for each plate and the complicated manipu- 
lation for the extremizing process must be 

executed for each problem. In this paper, a 
method is presented which carries out the 
complicated extremizing process for one plate 
and for all other plates with boundaries which 
form the conformal images of a unit circle. 

If the region R can be obtained by trans- 
forming a unit circular region R, as shown in 
Fig. lb, by a holomorphic function 

w = ; = if(i) with f’(c) # 0 in R, 
E c 

(6) 

then equation (4), after some manipulations, 
reduces to 

where [ = r e? The functional (7) is now defined 
in a circular region for which the coordinate 
functions can be easily chosen. 

The temperature distribution of a circular 
plate with the bo~da~ conditions (5b) can 
be expressed as a linear combination of the zero 
order Bessel functions [l]. Consequently, by 
neglecting the variation of 13 with respect to the 
polar angle I/I, the coordinate functions for the 
functional (7) in a circular region can be 
expressed as 

where c, is one of the roots of J,(c,,,) = 0 which 
are in the order of c1 < c2 < . . . < c,,, < . . . . 
To satisfy the subsidiary condition, I,,, will be 
set equal to a, after the variational process. 
Substitution of equation (8a) into equation (5a) 
for satisfaction of the initial condition yields 

2 
A,,,=-. 

G,,JI&,,) 
(9) 
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To provide a specific illustration, a class of 
regular polygonal plates will be studied. The 
mapping function which conformally transforms 
a regular polygonal region onto a unit circle is 

where A is the number of sides, a, is the apothem, 
and r represents the mapping coefficients [7] 
in Table 1. 

Table 1. Mapping coefficients r for 
regular polygons 

reduce to 

aF(ui) o 

-= 

&xi 
j = 1,2,...,N (12) 

Shape 

Triangle 
Square 
Pentagon 

for an N-term approximation, If the detailed 
operations in equation (12) are performed and 
ji is then set equal to C(i, the following equations 
for ixi result : 

r.k=l 

r2 N m 

cc 

Akb,b,DO’k) (pq) ak 

4 

k=l p.q=O 

(%j + akj2 

Hexagon 1.038 
Heptagon 1.028 
Octagon 1.022 

where 

= 0 j = 1,2,. . . N 

If the binomial formula is used, the derivative 
of the mapping function (10) can be expressed 
as follows : 

2n 1 

B, = { {$@)rdrdli, 

0 0 

where 

and 

b, = 1 

4, = n& (2 + A) (2 + 24). . . [2 + (n l)Al. 

It can be seen from equation (7) that only the 

2n 1 

Djkpq = 
ss 

PjPk(l’)’ (CA)* r dr dl(/ 

0 0 
Pj = Jo(cjr). 

(13) 

(14a) 

(14b) 

(I&) 

(14d) 

derivative of the mapping function is needed. 
Equation (11) is specifically designed for regular If one multiplies both sides of equation (13) 

polygons ; however, it can be used for other by (aj)2 and observes the relations 

regions by simply taking a, = r = A = 1 and 
assigning the proper values to the coefficients b,. 

B, =o if j#k (154 

By substitution of equations (8) and (11) into 
equation (7), the functional F[fJ becomes a 
function of a, denoted by F(ai). Consequently, 
the conditions for a stationary value of F[0] 

Bjj = i [c~~(cj)12 

D jjO0 = 7r[J,(Cj)]2. 

(15b) 

(15c) 
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Equation (13) can be rewritten as follows : 

Qw%,...,cwJ~ 

Ii=1 j&q=1 

N 

+a c (aj)' 

i,k= 1 

AiAkCi@! (q $ gj $ Ek)2 

= 0 j = 1,2,. . . , N. Wf 

Equation (16) is a set of N nonlinear algebraic 
equations for N unknowns wj, with (r and 
b,, b,, . . . , b, as small parameters. Conse- 
quently, the solution of equation (161, in the 
general case, can be generated from those 
cases where a and b ,, . . . , b, are zero. By setting 
those small parameters equal to zero and setting 
r equal to one in equation (16), one obtains 
Kj = (Cj)’ which is the expected solution of aj 
for a circular plate with constant conductivity. 

3. NUMERICAL RESULTS 
The procedure for solution of equation (16) 

with the arbitrary value of G will be developed 
according to the Newton-Raphson method 
[lo, 141. If the solution of equation (16) with 
d = c+, has been obtained and is denoted by 
cx!O! then I 3 

F {do! J 1 ). . . , @; a(J = 0. (17) 

And, if the unknown solution for (T which i; very 
close to go is Cli, Cli must satisfy the following 
equations : 

F@ 1,.*.,cr,;a) = 0. (18) 

The assumption that the q are in the neighbor- 
hood of @I”’ and the expansion of equation (18) 
in a Taylor series with only the terms of the 

first order smallness result in 

F,@ 1,...,cl,;a) 

= Ffajp? 7 

where 

. . . 
dF. 

,,@!;a,) $ LAa 
aa0 

N c aFj Aa = 0 + - &O! k (19) 
k=l 

Aa, =-a, - oci”! 

Aa = a - go, 

(204 

Gob) 

The step size of AC should be small enough so 
that equation (19) is valid within a certain 
preassigned accuracy. With the use of equation 
(17), the increments Arx, can be solved from 
equation (19) by the Cramer rule, 

N 

Aixk = 
c 

Ikj$ j = l,Z,...,N (211 
0 

k=l 

where I, are the elements of the inverse of the 
matrix - aF,iaot~“. After the Aa, are determined, 
the values of $ for an arbitra~ a can thus be 
obtained from equation (2Oa). 

Since, from the beginning, the values of ai”! 
are assumed to be known, the problem becomes 
one of determining the a(i”! They can always 
be obtained through a similar procedure with 
co = 0 by expanding Fj into a Taylor series 
with b,, b2,. . . , bM as the parameters. This 
choice of parameters is always possible since 
bM < bM_ 1 < . . . < b2 < b, < 1. 

For the evaluations of ACQ, the derivatives of 
Fj with respect to a& are needed. Through some 
rearrangements, they reduce to 

- 2 = % [rJ,(cj)]2sjk 
k 

N 

+ c 4fJ(Uj)2 

i=l 

AkA&i!(~~ + olj + ai~2 
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N 

2O(C& + C5i) Ct$jk 
values of o are calculated in the transformed 

- c AJ&ji! (a, + clj + ai~3 
plane by an IBM 360 computer. Some of the 
results, which illustrate the basic natures of the 

i,m=l parameter influences, are summarized in Figs. 2 
co 

c Akb,b,D,! @I! 
(ajj2(aj - ak) t3 

(aj + akj3 
P.4'1 10 I 

N a0 

r2 
+4 cc AibpbqDcij! (pq\ 

2(aJ2ajsjk 

’ (ai + aJ3 
i=l p.q=l 

j, k = 1,2,. . . , N. (22) 

To indicate the convergence of the series 
solution for the temperature distribution, the 
first ten coefficients ai of a square plate with 
different values of B are listed in Table 2. 
The rapid increase in the magnitude of a, 

shows that the ten term approximation gives 
a good expression of the temperature distri- 
bution. Substitution of the 4 coefficients, thus 
obtained, back into equation (16) yields ten O c s‘ C.-l 0.6 OH I 3 

residues which indicate the degrees of dissatis- 
faction of the ten nonlinear equations. The 

FIG. 2. Temperature distribution of regular polygonal 

arithmetic means of the residues are listed at 
plates with 0 = 0. 

the bottom of Table 2. It is seen that the mean 
residues which indicate the degrees of dissatis- and 3. Figure 2 shows that the temperature 
negligible when compared with even the smallest difference between two neighboring curves at 
coefficient a 1. the same position first increases and then 

The dimensionless temperature distribution decreases as time is increasing. This indicates 
of the regular polygonal plates with different the expected phenomenon; that is, the effect 

Table 2. Coefficients ai and means of residues for a square plate 

rs 

ai 
0.0 0.2 0.4 0.6 0.8 1.0 

21 5.0418 52846 55265 5.1677 6.0082 5.2062 
a2 24.823 24.939 25,150 25.535 25.777 26.911 
a3 57.685 51.439 51,356 57.419 57.613 64446 
a4 102.24 101.60 101.16 100.92 100.87 116.73 
% 158.15 157.37 156.79 156.41 156.25 183.28 
a6 225.66 225.32 225.09 225.01 225.12 264.07 
a7 305.93 307.69 309.27 3 10.79 312.33 359.48 
2s 399.93 405.09 40969 413.89 417.86 470.29 
a9 513.10 529.04 543.43 55663 568.92 579.95 
alo 634.98 644.01 652.20 659.75 666.85 744.29 

Residue x 10’ - 0.459 + 1.234 + 2.461 f0.191 - 6.405 -3,814 
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of the shape of the plate on the temperature 
distribution is at first pronounced, then weakens. 
Figure 3 shows that, at a fared time and a fixed 
position in the transformed region R, the 
temperature differences among all curves with 
equal increments of cr may be expected to be 

e 

features: simplicity of development, unification 
of the various plate shapes, and finally, economy 
of time required for a numerical result. 

Since the method is simply to determine the 
stationary value of a functional, it can be applied 
to any problem in a plane region with an 
irregular boundary if the functional associated 
with the problem is known. 
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APPLICATION DE LA TRANSFORMATION CONFORME ET DE LA METHODE 
DES VARIATIONS A L’ETUDE DE LA CONDUCTION DE CHALEUR DANS DES 

PLAQUES POLYGONALES AVEC UNE CONDUCTIVITE DEPENDANT DE LA 
TEMPERATURE. 

R&anmLLe problkme de valeur stationnaire du potentiel local pour la conduction thermique dans 
une plaque ~1ygoMie avec une conductivity d&pendant de la temperature est transform& par une fonction 
~olomorphe en un probleme equivalent relatif a une autre plaque ayant une front&e circulaire. Le 
probleme equivalent est alors resolu par la methode de Raleigh-Ritz puisque les fonctions coordonnees 
dans la region circulaire sont utilisables. Cette mbthode offre une correspondance entre le probltme de la 
distribution de temperature dune plaque a toutes les autres. L’application de cette methode peut dtre 
aisement ttendue a d’autres phenom&nes de transport qui sont gouvernC par l’extrtmisation d’une 

fonctionnelle. 

ANWENDUNG DER KONFORMEN ABBILDUNG UND DER 
VARIATIONSRECHNUNG AUF DAS STUDIUM DER WARMELEITUNG IN 

POLYGONFURMIGEN PLATTEN BE1 TEMPERATURABHANGTGER 
WARMELEITFAHIGKEIT. 

Zusammenfaaamtg-Das station&e Problem der lokalen Potentialverteilung ftir die Wlrmeleitung in 
einer poIygonf~rmig~ Platte bei tem~raturabh~ngig~ W~~eleit~~~eit wird durch eine hoiomorphe 
Funktion in ein Hquivalentes stationares Problem fiir eine Platte mit kreisformiger Berandu~ transformie~. 
Das iiquivalente Problem wird dann nach der Rayiei~-Ritz-Methode gel&f da die zugeordneten 
Funktionen in dem Kreisgebiet einfach zu bestimmen sind. Diese Methode eriiffnet einen einheitlichen 
Zugang zum Problem der Temperaturverteilung in Platten. Die Anwendung dieser Methode lasst sich 
leicht auf andere Transportphanomene ausdehnen, wenn diese ebenfalls durch eine Extremalbedingung 

hinsichtlich eines Funktionals beherrscht werden. 

IIPMMEHEHHE METOgA HOH@OPMHOI?O OTOBPA3ICEHWI M 
BAPMAI~I4OHHOI’O METOflA AJIH I43YYEHWI TElIJIOlIPOBO)&HOCTM 

B MHOI’OrPAHHhIX ILJIACTLlHAX IIPH 3ABlKl4MOCTkl RPOBOAHMOCTM 
OT TEMIIEPATYPhI 

AEEOT8~~-~Ta~~OHapH~e 3EiAaZrvl JlOKaJIbHOfO IIOTeHqHajla AJIR Te~~O~pO3O~~~OCT~~ B 

nj1ocK0~1 MKoro~ro~bK~Ke ~JIR cnyqax 3aB~lc~mero OT Te~nepaTyp~ no~~~~4~eHTaTen~o~- 
~O~O~HOCT~~peO6pa3yH-tTC~C~OMO~bK,aHa~ktTR~eCKO~(t)yHK~EIIIB3KBLfB~~IeHTH~H)~~OCKyIO 

cTa4~oKapKy~ 3aRasg 2~51 iipyra3aTeM 3KB~~Ba~eHTHa~ 3aza9a pemaeTcs ~eTo~0~ Poxen- 
hTl@, TaK KaK MOXHO Bb&'ipaTb KOOp~~~~aTHble @/HKLVfPi J$Jlfi KpyI'OBO& 06JiaCTLt. 3TOT 

MeToR npe,rrnaraeT yH~~~i~l~poBaHHb1~ no;(soE K aaAave 0 pacnpexe~eH~[~ Tenneparypbt u 
~~roGr,rx ~JIOCKHX o6JracTnx. ErO MOSKHOT~K~~C~PIC~OJI~~OB~T~~JKRW~~~~HYIR~~~~I~XRBJI~HH~~ 

nepeaoca, KOTOpbIe IIPMBOARTCR K 0npe~eneKnm 3KCTpeMyMa HeKOTOpOI'O @yHKwOHaJIa. 


