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Abstract—The stationary value problem of the local potential for heat conduction in a polygonal plate
with temperature-dependent conductivity is transformed by a holomorphic function into an equivalent
stationary value problem for another plate with a circular boundary. The equivalent problem is then
solved by the Rayleigh-Ritz method since the coordinate functions in the circular region are readily
available. This method offers a unified approach to the problem of the temperature distribution of one
plate and of all others. The application of this method can be easily extended to other transport phenomena
which are governed by the extremization of a functional,
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NOMENCLATURE

characteristic dimensions of a
polygonal plate;

derivative of any function f({)
with respect to the variable { ;
function of the undetermined
coefficients a;;

functional of the function 6;
Bessel function of order m;
thermal conductivity and diffu-
sivity;

reference values of k and «;
complex conjugate of any quan-
tity Q;

modulus of any quantity @;
symmetric part of any quantity
On:

polar coordinates in the {-plane ;
time and dimensionless time ;
temperatures subject to and not
subject to variations;

specified initial temperature ;
dimensionless coordinates in a
rectangular system in the z-
plane;
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X, ¥, rectangular coordinates;

z, ¢, complex variables;

z = f(), conformal mapping function;

8, 0%, dimensionless temperatures sub-
ject to and not subject to vari-
ations;

Eon, coordinates in a rectangular
system in the {-plane;

0, Cp» constant density and specific
heat;

"¢, 0, coordinate functions.

1. INTRODUCTION
THE LINEAR problem of heat conduction in a
plate which has a boundary that coincides
with the coordinate curves has been studied
extensively from both the engineering and the
mathematical viewpoints [1, 2]. Analytic solu-
tions are not tenable for polygonal plates.
Laura and Faulstich [3] present solutions for
this important class of plates with constant
conductivity. These authors apply the Munakata
approach [4] to transform the differential
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equation by a holomorphic function, which
maps the region of the definition of the original
equation into a circular region; the solution of
the transformed equation is then approximated
by the Galerkin method. A fairly complete
bibliography on the application of conformal
mapping in this direction can be found in [5-7].
This paper presents another aspect of the
application of conformal mapping. In this new
approach, a functional which is defined in an
irregular plane region and requires a stationary
value, is conformally mapped onto a circular
region. The functional which is now defined ina
circular region, is extremized by the Rayleigh—
Ritz method since the coordinate functions in a
circular region can be easily chosen. This method
is successfully applied to the determination of
the buckling loads of polygonal plates in [8].

Up until the local potential was introduced by
Glansdorff et al. [9], applications of the vari-
ational method were largely restricted to the
area of solid mechanics. Hays and Curd
have applied this extended variational method
to heat conduction in solids [10], to diffusional
problems [11, 12}, and to hydrodynamics [13].
Thus far, the extended variational method has
been applied to problems with relatively simple
geometric boundaries; that is, either square,
circular or semi-infinite. It is the primary
purpose of this paper to apply the conformal
transformation to the local potential so that
problems in a plane region with an irregular
boundary can be investigated. As a specific
illustration, the problem of unsteady heat
conduction in polygonal plates with temperature-
dependent conductivity is studied. Other trans-
port problems can be formulated with a similar
procedure.

2. GENERAL FORMULATION
Let an elastic plate in a temperature field
occupy a region R with an irregular boundary C,
as shown in Fig. 1a. It has been shown by Hays
[14] that the macroscopic temperature distri-
bution in R with the temperature of flux specified
on C can be obtained by extremizing the follow-

ing functional:
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subject to the initial condition and the subsidiary
condition T* = T after the variation process.
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Fic. 1. Conformal transformation of region R onto a unit
circular region R,
{a)} Region of actual plate.
(b) Region of transformed plate.

The thermal diffusivity will be assumed to be a
linear function of temperature which takes the
form

k
K= . = kol + o6) 2)

v
where ¢ is a free parameter characterizing the
slope of the diffusivity~temperature curve.
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It is expedient to introduce the following
dimensionless variables:

u=2 (3a)
aC

p="2 (3b)
aC

__Ko
T = (ac)zt (3¢c)
and

T

6 = 'T—;. (3d)

Substitution of equation (2) and (3) into equation
(1) yields
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The temperature T must be equal to T, in
R+ Catt =0andequaltozeroonCfort > 0.
Consequently, the dimensionless temperature
must satisfy the initial and the boundary con-
ditions as follows:

6=0*=1 (52)
§=06*=0 (5b)

If the coordinate functions which satisfy the
completeness condition in R and the conditions
in equation (5b) are chosen, then the functional
in equation (4) can be extremized by the Rayleigh—
Ritz method. The choice of the coordinate
functions for a simple shape of R is demonstrated
in [10, 13]. The coordinate functions for a
complicated shape can be formulated according
to the guides proposed by Yoshiko and Kawai
[15]. However, the method in [15] is undesirable
since the chosen functions must be formulated
once for each plate and the complicated manipu-
lation for the extremizing process must be

inRat t=0
onCfort> 0.

executed for each problem. In this paper, a
method is presented which carries out the
complicated extremizing process for one plate
and for all other plates with boundaries which
form the conformal images of a unit circle.

If the region R can be obtained by trans-
forming a unit circular region R,, as shown in
Fig. 1b, by a holomorphic function

Z

w=2-lr0 with QA0 in R
a, a,

(6)

then equation (4), after some manipulations,
reduces to

F[9]=J‘
0
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where { = r ', The functional (7) is now defined
in a circular region for which the coordinate
functions can be easily chosen.

The temperature distribution of a circular
plate with the boundary conditions (5b) can
be expressed as a linear combination of the zero
order Bessel functions [1]. Consequently, by
neglecting the variation of 6 with respect to the
polar angle ¥, the coordinate functions for the
functional (7) in a circular region can be
expressed as

6 =m21 AJocr) exp (o) (8a)
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9* = Z AmJO(Cmr) exp('—ﬁm‘[)
m=1

where c,, is one of the roots of Jy(c,) = 0 which
are in the order of ¢; < ¢, <...<c, <....
To satisfy the subsidiary condition, B, will be
set equal to o, after the variational process.
Substitution of equation (8a) into equation (5a)
for satisfaction of the initial condition yields

_ 2
™ Cpd 1(Cy)

(8b)

9
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To provide a specific illustration, a class of
regular polygonal plates will be studied. The
mapping function which conformaily transforms
a regular polygonal region onto a unit circle is

¢
de
«l J(T—T)/_
0

where 4 is the number of sides, g, is the apothem,
and I' represents the mapping coefficients [7]
in Table 1.

[ = (10)

Table 1. Mapping coefficients T for
regular polygons
7 Shape *
Trlangle 1-135
Square 1-079
Pentagon 1-052
Hexagon 1038
Heptagon 1-028
Octagon 1-022

If the binomial formula is used, the derivative
of the mapping function (10) can be expressed
as follows:

f10 =al io bACAy (11)
where
by =1
and
b, =—'——,;(2 +AHQ2+24)...[2+(n-14].
nta

It can be seen from equation (7) that only the
derivative of the mapping function is needed.
Equation (11) is specifically designed for regular
polygons; however, it can be used for other
regions by simply taking a. =TI' =4 =1 and
assigning the proper values to the coefficients b,

By substitution of equations (8) and (11) into
equation (7), the functional F[6] becomes a
function of «; denoted by F(x,). Consequently,
the conditions for a stationary value of F[0]

reduce to

OF(x,) _
ou,

J

i=12,....N (12)

for an N-term approximation. If the detailed
operations in equation (12) are performed and
B, is then set equal to «;, the following equations
for a; result:

Ffog, o ...,0:0)

N N
AB(k) 6 A;A,C{jk)
= —_— + _—.____—2
(a + o) (o + o + o)

k=1

Z Z Acb,b,D(k) (pg) o,
(2; + o)

k=1 p.g=0
=0 j=12...N (13
where
2n 1
Bj = _[ % <ap> dr dy (14a)
Jar\at
0
27 1
([, 8P;(oP,
Cip.= j P, —* 5 < C> dr dy (14b)
(]
2n 1
Dy = j PP (LYP (4 rdrdy (14c)
0o
P = Jolep). (14d)

If one multiplies both sides of equation (13)
by (ocj)2 and observes the relations

B, =0 if j#k (15a)
n 2

By =7ledile)] (15b)

Djjo0 = m[J,(c)]™ (15¢)
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Equation (13) can be rewritten as follows:
Ffoy,ay...,0y5;06)

= M e ey - TPa]
L1 [l ;

DY A

k=1 pg=1

ak(“ )
o+ o (o + %)?

N

+ AA,C (oy)”
i i

k=1

=0 j=12...,N. (16)
Equation (16} is a set of N nonlinear algebraic
equations for N unknowns «, with ¢ and
by, by, . . ., b, as small parameters. Conse-
quently, the solution of equation (16), in the
general case, can be generated from those
cases where ¢ and b, . .., b, are zero. By setting
those small parameters equal to zero and setting
I’ equal to one in equation (16), one obtains

= (c;* which is the expected solution of «;

for a circular plate with constant conductivity.

3. NUMERICAL RESULTS
The procedure for solution of equation (16)
with the arbitrary value of ¢ will be developed
according to the Newton—-Raphson method
[10, 14]. If the solution of equation (16) with
d = o, has been obtained and is denoted by

!9, then
(0) .

F {o”, (17

And, if the unknown solution for ¢ which is very
close to o, is o, o; must satisfy the following
equations

¥,
ag} s 60) 0

Ffay,... (18)

The assumption that the « are in the neighbor-
hood of «® and the expansion of equation (18)
in a Taylor series with only the terms of the

s oy 0) = 0.
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first order smallness result in

Ffog,...,ay;0)
=Fa, ..., 0" 00) + gf—}da
o
oF
+Za*°“""‘0 (19
k=1
where
Ao, =0, — (20a)
do =6 — 0, (20b)

The step size of 4o should be small enough so
that equation (19} is valid within a certain
preassigned accuracy. With the use of equation
(17), the increments Ax, can be solved from
equation (19) by the Cramer rule,

N
OF,

k=1

=1,2,...,N @1)

where I are the elements of the inverse of the
matrix — dF ;/0o”". After the Ao, are determined,
the values of A for an arbitrary ¢ can thus be
obtained from equation (20a).

Since, from the beginning, the values of &’
are assumed to be known, the problem becomes
one of determining the of”. They can always
be obtained through a similar procedure with
o, = 0 by expanding F; into a Taylor series
with b,, b,,..., by as the parameters. This
choice of parameters is always possible since
by <by_,<...€b,<h, <1

For the evaluations of Ax, the derivatives of
F; with respect to o, are needed. Through some
rearrangements, they reduce to

OF;
aock

2nA
min [FJl(Cj)] zéjk

N

4o(a )?
E A AC, o N
+ KRR (o, + a; + o)?

i=1
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N ©
r2
+ —4“2 z AbpbeD i (pa)

i=1 p,g=1
jk=12.,N.

() (a; — o)
(o + o)

2(“;‘)2“ 15 &
(o + o)

(22)

To indicate the convergence of the series
solution for the temperature distribution, the
first ten coefficients o; of a square plate with
different values of ¢ are listed in Table 2.
The rapid increase in the magnitude of «
shows that the ten term approximation gives
a good expression of the temperature distri-
bution. Substitution of the «; coefficients, thus
obtained, back into equation (16) yields ten
residues which indicate the degrees of dissatis-
faction of the ten nonlinear equations. The
arithmetic means of the residues are listed at
the bottom of Table 2. It is seen that the mean
residues which indicate the degrees of dissatis-
negligible when compared with even the smallest
coefficient o;.

The dimensionless temperature distribution
of the regular polygonal plates with different

C. M. YU

values of ¢ are calculated in the transformed
plane by an IBM 360 computer. Some of the
results, which illustrate the basic natures of the
parameter influences, are summarized in Figs. 2

]

Fig. 2. Temperature distribution of regular polygonal
plates with ¢ = 0.

and 3. Figure 2 shows that the temperature
difference between two neighboring curves at
the same position first increases and then
decreases as time is increasing. This indicates
the expected phenomenon; that is, the effect

Table 2. Coefficients a; and means of residues for a square plate

o

3 -
02

0-0
% 50418 5-2846
a, 24-823 24-939 2
o3 57-685 57-439 5
% 102:24 101-60 10
s 158-15 15737 15
g 22566 22532 22
o, 30593 307-69 30
o 39993 40509 40
S 513-10 529-04 54
%0 63498 64401 65
Residue x 10% —0-459 +1234 +

0-4

1-0

5-5265 57677 6-0082 5-2062
5:150 25-535 25777 26911
7-356 57419 57-613 64-446
116 100:92 100-87 116:73
679 156-41 156-25 183-28
509 22501 225-12 264-07
9-27 31079 31233 359-48
9-69 413-89 417-86 470-29
343 55663 568-92 579-95
2-20 659-75 666-85 74429
2:461 +0191 —6-405 —3-814
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of the shape of the plate on the temperature
distribution is at first pronounced, then weakens.
Figure 3 shows that, at a fixed time and a fixed
position in the transformed region R, the
temperature differences among all curves with
equal increments of ¢ may be expected to be

68

0-6

0-2

o]

Fi16. 3. Temperature distribution of a square plate with
different values of a.

the same. However, if the curves are transformed
into the actual plane R, the actual temperature
differences will no longer be the same but will
be magnified by a factor which is a function of
the coefficients o, The value of this factor can
be evaluated from equation (8a).

4. CONCLUSIONS

The temperature distribution in the polygonal
plates with linear temperature-dependent con-
ductivity has been solved once and for all. The
development is equally valid for cases in which
the conductivity is an arbitrary function of
temperature. In the general cases, the algebraic
equations are more complicated, but this will
introduce no basic difficulty.

Without reiterating the many advantages of
the variational method, the procedure developed
in this paper provides the following significant

features: simplicity of development, unification
of the various plate shapes, and finally, economy
of time required for a numerical result.

Since the method is simply to determine the
stationary value of a functional, it can be applied
to any problem in a plane region with an
irregular boundary if the functional associated
with the problem is known.
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APPLICATION DE LA TRANSFORMATION CONFORME ET DE LA METHODE
DES VARIATIONS A L’ETUDE DE LA CONDUCTION DE CHALEUR DANS DES
PLAQUES POLYGONALES AVEC UNE CONDUCTIVITE DEPENDANT DE LA
TEMPERATURE.

Résumé—Le probléme de valeur stationnaire du potentiel local pour la conduction thermique dans
une plaque polygonale avec une conductivité dépendant de la température est transformé par une fonction
holomorphe en un probléme équivalent relatif 3 une autre plague ayant une frontiére circulaire. Le
probléme équivalent est alors résolu par la méthode de Raleigh-Ritz puisque les fonctions coordonnées
dans la région circulaire sont utilisables. Cette méthode offre une correspondance entre le probléme de la
distribution de température d’une plaque & toutes les autres. L’application de cette méthode peut &tre
aisément étendue 4 d’autres phénoménes de transport qui sont gouvernés par l'extrémisation d’une
fonctionnelle.

ANWENDUNG DER KONFORMEN ABBILDUNG UND DER
VARIATIONSRECHNUNG AUF DAS STUDIUM DER WARMELEITUNG IN
POLYGONFORMIGEN PLATTEN BEI TEMPERATURABHANGIGER
WARMELEITFAHIGKEIT.

Zusammenfassung—Das stationdire Problem der lokalen Potentialverteilung fir die Wirmeleitung in
einer polygonférmigen Platte bei temperaturabhngiger Wirmeleitfahigkeit wird durch eine holomorphe
Funktion in ein dquivalentes stationdires Problem filr eine Platte mit kreisférmiger Berandung transformiert.
Das dquivalente Problem wird dann pach der Rayleigh-Ritz-Methode geldst, da die zugeordneten
Funktionen in dem Kreisgebict einfach zu bestimmen sind. Diese Methode erdffnet einen einheitlichen
Zugang zum Problem der Temperaturverteilung in Platten. Die Anwendung dieser Methode lisst sich
leicht auf andere Transportphinomene ausdehnen, wenn diese ebenfalls durch eine Extremalbedingung
hinsichtlich eines Funktionals beherrscht werden.

[MPUMEHEHUE METOJA KOH®OPMHOI'O OTOBPAMKEHNA U
BAPUAIIMOHHOI'O METOJIA JIJIA N3YHYEHNA TENJOIIPOBOIHOCTU
B MHOTOT'PAHHbLIX TIJIACTHHAX [P 3ABUCHMOCTH INTPOBOAMUMOCTU
OT TEMIEPATYPEI

Annoranua—CTanuonapHbie 333Ul JIOKAJBHOTO MNOTEHIMANA NS TenJONDOBONHOCTH B
TIIIOCKOM MHOTOYTOJBHHEKE NI CIYYas 3aBHCALIETO OT TeMIepaTyps xosddunuenTa Tennon-
POBOAHOCTH TPEoGPA3YIOTCA € HOMOIIBIO AHATTUTHYECKON (Y HKIUH B IKBUBAJIEHTHY IO INIOCKY 10
CTAIMOHAPHY 3ajauy AJd KPYyrasaTeM oKBHBAJEHTHAA sajada pemaerca Meropom Pemes-
Purna, Tak KAK MOKHO BRIOMpATh ROOpHMHATHBIE YHRIUM JJIA Kpyrosolt ofxactu. JTOT
MEeTOJ mpeanaraeT YHUQMIMPOBAHHHN NOAXOX K 3ajaue O pacnpeje/ieHHM TEMUepaTyps B
Mo6bix MIOCKux obxactax. Bro MOMHO TaKiKe NCHOIb30BATH AIA NBYYCHUA APYTUX ABIEHUH
TIePEeHOCa, KOTOPHIE MPUBOJATCA K ONIPeNleIeHNI0O BKCTPEMYMA HEKOTOPOTO QYHKIMOHAIA.



